Locally Weighted Scatterplot Smoothing (LOWESS)
The classical procedure to smooth a scatterplot is to fit a polynomial of suitable degree. The problem with polynomial smoothing is that it is not resistant. A few data points at the extreme right of the scatterplot can very much affect the fitted values at the left of the scatterplot. In fact, this is a general problem of fitting curves with the least squares method. Lowess regression, introduced by Cleveland (1979), is based on a smoothing procedure which pays greater attention to the local points. The smoothed value of y corresponding to a data point \(x_i \), say, is obtained on the basis of the data points around it within a band of certain width. The point \(x_i \) is the midpoint of the band. The data points within the band are assigned weights in a way so that \(x_i \) has the highest weight. The weights for the other data points decline with their distance from \(x_i \) according to a weight function. The weighted least squares method is used to find the fitted value corresponding to \(x_i \), which is taken as the smoothed value. The procedure is repeated for all the data points.

Box 4.1: Computation of lowess

1. Choose a fraction \(f \) of the data points which is to be used for computation of each fitted value. Let \(b \) be the nearest integer to \(f.n/2 \) where \(n \) is the number of all data points i.e. size of the data. In other words, \(2b \) is the number of points around each \(x \) (including itself) i.e. the bandwidth, to be used for fitting. In practice, you often have to try out a few choices of \(f \), say between 0.4 to 0.8. Greater the value of \(f \), greater the smoothing effect but less may be details of the curve.

2. Let \(d_i \) be the distance from \(x_i \) to its \(b \)th nearest neighbour along the x axis and \(T \) be the weight function. Then the weight \(w_k \) given to the point \((x_k, y_k) \) when computing a smoothed value at \(x_i \), is as follows:

\[
w_k = T\left(\frac{x_i - x_k}{d_i} \right) \quad \text{where} \quad T(u) = \begin{cases} (1-|u|)^3 & \text{for } |u| < 1 \\ 0 & \text{otherwise} \end{cases}
\]

If \(d_i \) is 0, meaning that the \(b \) nearest neighbours of \(x_i \) all have abscissas equal to \(x_i \), then points whose abscissas are equal to \(x_i \) are given weight 1 and all other points are given weight 0. In this a constant is fit instead of a line.

3. To compute the fitted value at \(x_i \) (or constant when \(d_i \) is 0) a weighted least squares fit is obtained. Thus, we have –

\[
b_{\text{estimate}} = \frac{\sum w_i^2 (x_k - \bar{x})(y_k - \bar{y})}{\sum w_i^2 (x_k - x)^2} \quad \text{and} \quad a_{\text{estimate}} = \bar{y} - b_{\text{estimate}} \bar{x}
\]

where \(\bar{y} \) and \(\bar{x} \) are weighted means

fitted \(y_i = a_{\text{estimate}} + b_{\text{estimate}} \cdot x_i \)